skip to main content


Search for: All records

Creators/Authors contains: "Preußer, Andreas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreakerR/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products.

     
    more » « less
  2. Abstract

    Over a five-month time window between March and July 2020, scientists deployed two small uncrewed aircraft systems (sUAS) to the central Arctic Ocean as part of legs three and four of the MOSAiC expedition. These sUAS were flown to measure the thermodynamic and kinematic state of the lower atmosphere, including collecting information on temperature, pressure, humidity and winds between the surface and 1 km, as well as to document ice properties, including albedo, melt pond fraction, and open water amounts. The atmospheric state flights were primarily conducted by the DataHawk2 sUAS, which was operated primarily in a profiling manner, while the surface property flights were conducted using the HELiX sUAS, which flew grid patterns, profiles, and hover flights. In total, over 120 flights were conducted and over 48 flight hours of data were collected, sampling conditions that included temperatures as low as −35 °C and as warm as 15 °C, spanning the summer melt season.

     
    more » « less
  3. This dataset includes unprocessed raw data from DataHawk2 fixed-wind uncrewed aircraft system (UAS) flights that were conducted in the central Arctic Ocean over sea ice during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Synchronized and quality controlled data are available in the Arctic Data Center at doi:10.18739/A22Z12Q8X for data provided at their native frequency logged on board the aircraft’s secure digital (SD) card (A1 level files), or at doi:10.18739/A2Z60C34R for data interpolated to a common 10 hertz (Hz) clock (B1 level files). Users are encouraged to primarily use the B1 level data for analysis. Please contact the authors if you plan to use this dataset. More information on data collection with the DataHawk2 can be found in de Boer, G. R. Calmer, G. Jozef, J. Cassano, J. Hamilton, D. Lawrence, S. Borenstein, A. Doddi, C. Cox, J. Schmale, A. Preußer and B. Argrow (2022): Observing the Central Arctic Atmosphere and Surface with University of Colorado Uncrewed Aircraft Systems, Nature Scientific Data, submitted. 
    more » « less
  4. This dataset is derived from DataHawk2 fixed-wind uncrewed aircraft system (UAS) flights that were conducted in the central Arctic Ocean over sea ice during the MOSAiC expedition. The data include Universal Coordinated Time (UTC), aircraft position and attitude, atmospheric thermodynamic conditions (pressure, temperature, humidity) from various sensors, approximate brightness temperature of the surface and overlying atmosphere, and estimated horizontal winds. A flight flag is included to indicate when the aircraft is in flight. All the data have been synchronized and quality controlled, and are provided at their native frequency logged on board the aircraft’s secure digital (SD) card. Data interpolated to a common 10 hertz (Hz) clock are provided in the B1 level files, and are available in the Arctic Data Center at doi:10.18739/A2Z60C34R. Users are encouraged to primarily use the B1 level data for analysis. More information on the data and methods used for synchronization and quality control can be found in de Boer, G. R. Calmer, G. Jozef, J. Cassano, J. Hamilton, D. Lawrence, S. Borenstein, A. Doddi, C. Cox, J. Schmale, A. Preußer and B. Argrow (2021): Observing the Central Arctic Atmosphere and Surface with University of Colorado Uncrewed Aircraft Systems, Nature Scientific Data, in prep. 
    more » « less
  5. This dataset is derived from DataHawk2 fixed-wind uncrewed aircraft system (UAS) flights that were conducted in the central Arctic Ocean over sea ice during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The data include Coordinated Universal Time (UTC), aircraft position and attitude, atmospheric thermodynamic conditions (pressure, temperature, humidity) from various sensors, approximate brightness temperature of the surface and overlying atmosphere, and estimated horizontal winds. A flight flag is included to indicate when the aircraft is in flight. All the data have been synchronized, quality controlled, and interpolated at 10 hertz (Hz). Data at their native frequency are provided in the A1 level files, and are available in the Arctic Data Center at doi:10.18739/A22Z12Q8X. The purpose of this dataset is to provide information on the thermodynamic and kinematic states of the lower atmosphere, and provide detailed observations of turbulence between the surface and one kilometer. Two flight patterns were implemented during the campaign with the DataHawk2: an orbital profile extending from the ice surface to 1000 meter(m) or cloud base if lower, and a “racetrack” pattern where the aircraft was held at a constant altitude while sampling horizontally between two circles. The latter was used to collect data on the spatial variability of thermodynamic properties over the ice surface, particularly over inhomogeneities in the surface such as leads. Displaying latitude, longitude and altitude will help users to identify the flight pattern. Thermodynamic and kinematic measurements have been validated with radiosonde-based measurements. More information on the data and methods used for synchronization and quality control can be found in de Boer, G. R. Calmer, G. Jozef, J. Cassano, J. Hamilton, D. Lawrence, S. Borenstein, A. Doddi, C. Cox, J. Schmale, A. Preußer and B. Argrow (2021): Observing the Central Arctic Atmosphere and Surface with University of Colorado Uncrewed Aircraft Systems, Nature Scientific Data, in prep. 
    more » « less
  6. With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
    more » « less